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Abstract
Disorder correlations lead to important effects on the localization of states in one-dimensional
systems, as shown for a large number of correlation models in the context of polymers and
macromolecules. The extension of the problem to two-dimensional systems has been less
frequently discussed due to the lack, until recently, of realistic systems with properties that
could be addressed to the effects of correlations in disorder. The advent of self-assembled
quantum dots, which may show short-range ordering, has changed this scenario. In the present
work we investigate the properties of a two-dimensional disordered lattice with short-range
correlations in the disorder that reveals itself as a minimal model for self-assembled quantum
dots. The short-range correlations in disorder may lead to significant enhancement of the
localization length for wide energy windows.

1. Introduction

Low-dimensional systems of non-interacting electrons show
only localized states in the presence of disorder, while
in three dimensions a metal–insulator transition (MIT)
would be expected. This landmark in condensed matter
physics was established by scaling arguments in a seminal
work [1] a few decades ago. In spite of numerical support
for this statement [2], several one-and two-dimensional
(2D) disordered systems have been investigated in which
delocalization is achieved by adding extra ingredients to the
problem. The first example is the integer quantum Hall effect,
where extended states appear in 2D disorder systems in the
presence of magnetic fields [3]. More recently it has been
found that 2D disordered systems with sympletic symmetry
also show mobility edges [4].

Several models also reveal delocalization of states in
one-dimensional disordered systems with correlations in
the disorder, for both short-range, like the random dimer
model [5], or long-range correlations [6]. Such investigations
have been triggered by the study of polymer conductivity [7].
On the other hand, the extension of these investigations to 2D
systems has been much less intense. Indeed, the pioneering
work on the subject, considering short-range correlation, is
quite recent [8], although within a rather heuristic model
framework. Another recent work shows that long-range
correlated disorder may induce a MIT [9]. It should be noticed
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that the experimental evidences of MIT in 2D MOSFET-like
systems [10] raised an avalanche of explanatory hypotheses,
mostly related to the interplay of disorder and electron–
electron interactions [11], as has been established. However,
a MIT has also been observed in a different 2D disordered
system; a self-assembled quantum dots array [12]. Here there
is evidence of short-range order among the quantum dots and
it has been suggested that such correlations in the disorder
show signatures in the transport properties [13]. An even
more promising system consists of adsorbed atoms on clean
surfaces. Depending on the coverage, the adatoms show
different ordering [14]. From the transport properties point
of view, such systems may vary the conductivity from band-
like to carrier localization regimes [15]. In this context, the
investigation of correlations in the disorder in 2D systems
of non-interacting electrons becomes relevant and necessary.
The observation of such MIT in 2D systems not driven by
interactions has been addressed theoretically by percolation-
like descriptions [16] or power-law transfer terms within a
tight-binding model [17].

In the present work we address the question of possible
MIT from the point of view of short-range correlations in
the disorder, motivated by experimental findings in self-
assembled quantum dots [12]. The paper is organized as
follows. In section 2, a minimal model for a quantum dot-like
array, showing short-range order, is presented and a structural
analysis of these systems is discussed. In section 3 the
electronic structure of the system and the effect of the disorder
correlations on the localization of the states is addressed. In the
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Figure 1. Model quantum dot (black dots) in a wetting host layer (white region) system configuration. (a) Without short-range correlation
showing QDs merging. (b) In the presence of the short-range correlation precluding QD coalescence. Both cases are for a 60 × 60 sites square
lattice with P(QD) = 0.3.

(a) (b)

Figure 2. Fourier transforms of the systems depicted in figure 1. New structures in (b) are due to the short-range order.

following conclusions section, we summarize the results by
observing that short-range order among quantum dots leads to
an important enhancement of the localization length, but no
true MIT can be seen in a non-interacting scenario.

2. Lattice model

The system studied in the present work is a square lattice
of single s-like atomic orbitals, treated within a tight-
binding approximation and considering nearest neighbor
hopping only. We consider two kinds of orbitals, one of
them emulating wetting layer (WL)-like sites, εWL, and the
second one emulating quantum dot (QD)-like sites, εQD. In
this approximation, the Hamiltonian assumes the following
form:

H =
N∑

i, j

εi, j |i, j〉〈i, j | + V |i, j〉〈i + 1, j | + V |i, j〉

× 〈i − 1, j | + V |i, j + 1〉〈i, j | + V |i, j〉〈i, j − 1|, (1)

where the hopping parameter V can be either VQD–WL or
VWL–WL, for the two possible hoppings: between a QD
site and a WL site or between two WL sites, respectively.
The concentration of QD-like sites for a given disorder
configuration, is given as a simulation input, P(QD). The
disorder correlation which mimics a self-assembled quantum

dot layer is simply the restriction that sites assigned by εQD

cannot be first neighbor of another QD-like site in the plane.
Imposing this restriction leads to planes with isolated sites
emulating self-assembled quantum dots, while removing this
constraint will lead to clustering of QD-like sites. In figure 1
we show examples of disorder configurations with P(QD) =
0.3: without correlation, figure 1(a); and with correlation,
figure 1(b), both for a square lattice (M = L × L) of
60 × 60 sites. We clearly see the effect of the correlation
in the disorder: the formation of ‘quantum dot polycrystals’
(black squares) with short-range order, in particular, patterns
of quantum dot wires can be identified. The uncorrelated
configuration, figure 1(a), shows the expected site clustering of
a binary alloy without any constraints. It should be noticed that
since we are interested in the qualitative aspects of the effects
of short-range correlation in 2D systems, we choose a heuristic
model of a square lattice, although the experimental evidence
points to a hexagonal short-range order in self-assembled
semiconductor quantum dots [13]. On the other hand, the
present approach could represent a more realistic modeling of
adatoms systems, although here the experimental evidence is
also local hexagonal ordering [14].

An order parameter can be given by the Fourier transform
of these square lattice configurations. In figure 2 we show
the Fourier transform of figure 1. For the uncorrelated case,
figure 2(a), we identify only a sharp peak at the center of
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the reciprocal lattice, related to the square host lattice of a
completely random binary alloy. On the other hand, for the
disorder correlated case in figure 2(b) broad structures of four
satellite peaks are identified, which are related to the finite size
clusters of binary alloys with short-range order (‘quantum dot
polycrystals’). The relative height of these satellite peaks gives
an order parameter to the problem that permits us to follow the
evolution of electronic structure and localization properties as a
function of disorder. The distances between the satellite peaks
are associated here to simply doubling the lattice parameter
of the host lattice used in the simulations, but in real systems
could be related to the reciprocal of the distance between a
quantum dot and its nearest neighbors.

In what follows we describe the evolution of the electronic
and localization properties for different systems, varying the
quantum dot concentration and lattice sizes up to squares of
100 × 100 sites with Dirichlet boundary conditions. Since
we are dealing with disordered finite systems, averages over
different configurations are taken in all electronic quantity
calculations shown below.

3. Electronic structure and localization

The results shown below are qualitatively robust for a wide
range of tight-binding parameters. The results shown here
are for the following parameters: εWL = 1.0 eV, εQD =
−1.0 eV, VQD–WL = 0.5 eV, and VWL–WL = 1.0 eV.
The choice of these parameters is rather heuristic, since the
experimental system which motivates the present work [12]
has some characteristics worth mentioning. We are interested
in the modification of electronic structure of a 2D system—the
wetting layer—by the presence of a very high density of QDs
(5 × 1010 dots cm−2). With this remark in mind, the chosen
parameters emulate a wide WL-like band with quantum dot
levels in the lower energy range. Increasing the number of
QDs leads to drastic changes in the electronic structure of the
whole system, which are experimentally rather unknown. The
densities of states for different concentrations of QD-like sites,
P(QD), are shown in figure 3 for correlated disorder cases of
60 × 60 site systems. As expected, for P(QD) = 0.0 the
densities of states show the signature of the 2D host square
lattice, while P(QD) = 0.5 represents an ordered binary
alloy. Fingerprints of the van Hove singularities of the ordered
binary alloy case are already present at low concentrations like
P(QD) = 0.05 (not shown here). In figure 3 we also show
an intermediate concentration of P(QD) = 0.3 where the van
Hove singularities of ordered binary systems are already well
developed, but the disorder is reflected in the finite density
of states in the gap region. The density of states in the gap
region is, nevertheless, not as clear a measure of disorder as
the Fourier transform of the dot configuration, figure 2. In the
inset of figure 3, the relative height of the satellite peaks in
the Fourier transform is shown. One can see how this order
parameter evolves, comparing two cases: P(QD) = 0.3, with
well developed satellite peaks (quite broad due to the finite
size of the ‘QD crystals’), and P(QD) = 0.1, where there
are only very incipient signatures of these structures. It should
be mentioned that some of the important features that appear
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Figure 3. Densities of states for the QD lattice for increasing QD
concentration. Inset: evolution of the extra peaks in the Fourier
transform of correlated systems with increasing QD concentration.

in our results are still not comparable to real self-assembled
QD systems. Nevertheless, we consider of relevance the
lower energy range, around the QD-like site energy, εQD,
since QD-like sites are those for which a local correlation is
considered, while WL-like sites continue uncorrelated until
concentrations approaching the ordered binary alloy limit,
P(QD) = 0.5.

There are no qualitative changes in the electronic
structure, from the point of view of the calculated density of
states, with the size of the system. If, on the other hand, one
focuses on the degree of localization, such size effects should
be evaluated. The degree of localization of a state is given
here by the participation ratio (PR) [18], defined, in the tight-
binding approximation, by:

PR = 1

N2
∑N

i=1

∑N
j=1 |ai, j |4

(2)

where ai, j is the wavefunction amplitude in the (i, j) site.
The PR is close to zero for localized states when N → ∞

(for maximum localization, i.e. the wavefunction localized on
a single site, |ai, j | = δi, j , PR = 1/N2) and reaches the
maximum value of 4/9 for delocalized states in the case of a 2D
ordered system. The expression above is explicit for a square
2D system N sites wide in each direction. Such measuring of
the degree of localization is sometimes addressed also by an
equivalent quantity, namely the inverse participation ratio, as
discussed by Thouless [19].

In order to reveal the effect of our model correlation on
the electronic localization, we compare in figure 4 the PR of
the electronic states in a 2D system with P(QD) = 0.3 with
correlation (continuous line) and without correlation (large
dots) for 60 × 60 site host lattices. Three different regions can
be identified for the behavior of the PR. For lower energies,
there is evidence of a noticeable enhancement (a factor of 3)
of the localization length. The gap edges (at −1.0 eV and
1.0 eV) show clear fingerprints also in the averaged PR for
both correlated and uncorrelated cases. It should be noticed
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Figure 4. Participation ratio for a 60 × 60 lattice with a
concentration P(QD) = 0.3 with (continuous line) and without
(large dots) correlation.

that in the gap region, the PR for the uncorrelated case is
now higher than for the correlated system. Nevertheless, this
difference is not so pronounced as the inverse one for lower
energies. For the higher energy band region no significant
differences are introduced by the presence of short-range order.
All these characteristics are robust as a function of system size
and become more pronounced with increasing QD-like sites up
to P(QD) = 0.45: (i) formation of an effectively delocalized
band at a lower energy band −2.5 eV < E < −1.0 eV,
(ii) suppression of the density of states in the gap region for the
correlated cases with the concomitant diminution of the PR,
compared to the uncorrelated systems and, (iii) no qualitative
differences at higher energies.

The main result found here is the appearance of a band
of effectively delocalized states (seen here as a state with a
localization length greater than the system size [20]), although
we find no evidence of a true MIT [8] for the present model at
the explored parameter ranges. We call attention to the fact
that a band of effectively delocalized states occurs at lower
energies, associated to the QD-like sites that are correlated,
while the higher energy range is associated to the WL-
like sites, which are not correlated. However, the effective
delocalization could be of relevance in actual self-assembled
QD systems [13], as can be seen from PR calculations as a
function of QD concentration and system size (M = L2),
figure 5. When a low QD concentration is considered,
P(QD) = 0.1 and P(QD) = 0.2, figures 5(a) and (b),
the dependence on the system size for the maximum PR
(E ≈ −1.5 eV) is similar for both cases, correlated and
uncorrelated, and the difference between their absolute values
is rather small, up to two times higher for the correlated
system. There should be few ‘QD crystals’ regions, even
when the correlation is imposed, due to the low concentration.
The size of such regions has also to be rather small. When
higher concentrations are considered, P(QD) = 0.3 and
P(QD) = 0.4, as shown in figures 5(c) and (d), new important
qualitative and quantitative differences between the correlated
and uncorrelated cases appear at the system sizes investigated.
While the PR for uncorrelated systems continuously decrease
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Figure 5. Participation ratios at E ≈ −1.5 eV for correlated (open
circles) and uncorrelated (open squared) systems as a function of
lattice size and for different QD-like site concentrations:
(a) P(QD) = 0.1, (b) P(QD) = 0.2, (c) P(QD) = 0.3 and
(d) P(QD) = 0.4. The PR for a state completely delocalized is also
shown (diamond).

with the increase of the system size, it tends to saturate when
correlation is considered. This saturation seems to occur even
for small system lengths. Indeed, in figure 5(c) one can see that
the correlation enhances the PR by a factor of two even for a
system of 30 × 30 sites. Moreover, for large systems, the PR
values of correlated systems are now six times higher than for
the uncorrelated cases, a significant difference. These results
suggest that the enhancement of the localization length, one
possible mechanism for a metal–insulator crossover—due to a
local spatial correlation—is present already at low quantum dot
concentration, becoming more pronounced with increasing dot
density [12].

The present results are also interesting in the scenario
of conductivity dependence on adatom coverage of a given
surface [15]. In this context, the increase of QD concentration
may be seen as an increase of the surface coverage. In our
model, the highest coverage P(QD) = 0.5 corresponds to
an ordered 2D system and all states become delocalized (not
shown here). A slightly lower coverage ratio, P(QD) =
0.4, figure 5(d), reveals an important difference between the
presence or absence of correlation in the disorder.

4. Conclusions

Here, we have presented a minimal model for correlation in 2D
self-assembled QDs in which there is no QD–QD coalescence.
Due to that correlation, there is a formation of finite ‘QD
crystals’ that leads to the appearance of four additional broad
peaks in the Fourier transform of the lattice. Moreover, the
main effect of such correlation is the raising of a band of
effectively delocalized states. This effect is more pronounced
for higher concentrations of QDs as reflected by the developing
of the van Hove peaks in the density of states. In this work,
however, there is no definitive evidence of a metal–insulator
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transition as predicted theoretically for other models [8], or
seen experimentally in related systems [12]. Nevertheless,
that effective delocalization due to correlations could be an
important mechanism in determining the transport properties
of self-assembled quantum dots or adatom systems.
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